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Lecture 1 - Regular group convolutions

Lecture 1.4 - SE(2) Equivariant NN Example |
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Bekkers & Lafarge et al. MICCAI 2018

Architecture for rotation invariant mitotic cell detection

Lifting layer (1 channel example) Group conv layers  Projection layer
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Bekkers & Lafarge et al. MICCAI 2018

Architecture for rotation invariant mitotic cell detection

Lifting layer (1 channel example) Group conv layers  Projection layer
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Architecture for rotation invariant mitotic cell detection

Mitotic figure

Mitosis detection (F{-score)
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Bekkers & Lafarge et al. MICCAI 2018

Architecture for rotation invariant mitotic cell detection
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Lafarge et al. MedIA 2020
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G-CNNs guarantee

geometric stability.
They are robust to
input distortions,
regular CNNs aren'’t...

G-CNNs without data-augmentation
outperform
CNNs with data-augmentation
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Mitosis detection (F{—score)
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G-CNNs guarantee
geometric stability.
They are robust to
input distortions,

regular CNNs aren'’t...

G-CNNs are more sample efficient!
G-CNNs (25% data) > CNNs (100% data)

G-CNNs without data-augmentation
outperform
CNNs with data-augmentation
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Figure 7@ Mean and Standard Deviation plots summarizing the
accuracy of the tumor classification models. Mean 1 standard devia-
tion is indicated. Color identifies the different data regime (red: 100%;
lime: 75%; green: 50%; blue: 25%; purple: 10%).



Experiments In medical image analysis
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From rotation to scale equivariant CNNs

Bekkers ICLR 2020

Iranslation + scale equivariant G-CNNs
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From rotation to scale equivariant CNNs

Romero, Bekkers, Tomczak, Hoogeboom
Wavelet Networks: Scale Equivariant Learning
From Raw Waveforms - arXiv:2006.05259

The lifting group convolution:
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G-CNNs rule!

* The right inductive bias: guaranteed equivariance
(no loss of information)

* Performance gains that can’t be obtained by data-augmentation alone
(both local and global equivariance/invariance)

* |ncreased sample efficiency
(increased weight sharing, no geometric augmentation necessary)
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